Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[silver(I)- μ-pyrazolato$\left.\kappa^{2} N: N^{\prime}\right]$

Chao-Yan Zhang, Jian-Bo Feng, Qian Gao and Ya-Bo Xie*

College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China
Correspondence e-mail: xieyabo@eyou.com
Received 29 October 2007; accepted 26 November 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.041 ; w R$ factor $=0.066 ;$ data-to-parameter ratio $=17.3$.

The title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)\right]_{n}$, has an infinite helical chain structure in which each pyrazolate group bridges two Ag^{I} atoms related by a 2_{1} axis with an intrachain $\mathrm{Ag} \cdots \mathrm{Ag}$ separation of $3.3718(7) \AA$. Each Ag^{I} center is linearly coordinated by two N atoms $[\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ angle $=$ $\left.169.98(14)^{\circ}\right]$. The chains are held together by interchain $\mathrm{Ag} \cdots \mathrm{Ag}$ interactions [3.2547 (6) Å], forming a two-dimensional layer. The X-ray single-crystal diffraction result is consonant with that of the ab initio X-ray powder diffraction reported by Masciocchi, Moret, Cairati, Sironi, Ardizzoia \& La Monica [J. Am. Chem. Soc. (1994). 116, 7668-7676], with only minor deviations of structural parameters.

Related literature

For related literature, see: Masciocchi et al. (1994).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)\right]} \\
& M_{r}=174.94 \\
& \text { Orthorhombic, } P b c a \\
& a=6.4084(13) \AA \\
& b=6.4989(13) \AA \\
& c=19.948(4) \AA
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\min }=0.340, T_{\max }=0.400$
7019 measured reflections 951 independent reflections 778 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 55$ parameters
$w R\left(F^{2}\right)=0.066 \quad$ H-atom parameters constrained
$S=1.26$
951 reflections
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Ag} 1-\mathrm{N} 1$	$2.070(3)$	$\mathrm{Ag} 1 \cdots \mathrm{Ag}_{1} 1^{\mathrm{ii}}$	$3.2547(6)$
$\mathrm{Ag} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.063(4)$	$\mathrm{Ag} 1 \cdots \mathrm{Ag} 1^{\mathrm{i}}$	3.3718 (7)
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1$	169.98 (14)		

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2},-z+2$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2042).

References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Masciocchi, N., Moret, M., Cairati, P., Sironi, A., Ardizzoia, G. A. \& La Monica, G. (1994). J. Am. Chem. Soc. 116, 7668-7676.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2008). E64, m352 [doi:10.1107/S1600536807063490]

catena-Poly[silver(I)- $\left.\mu_{\text {-pyrazolato- }} \kappa^{2} N: N^{\prime}\right]$

C.-Y. Zhang, J.-B. Feng, Q. Gao and Y.-B. Xie

Comment

The synthesis and structure of silver(I)-pyrazolate, i.e. the title compound, $\left[\operatorname{Ag}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)\right]_{n}(\mathrm{I})$ has been reported by Masciocchi et al. (1994). In this work, the crystal structure was determined by the Ab-initio X-ray powder diffraction method and refined with the Rietveld technique in the space group of Pbca with $a=6.5295$ (4), $b=20.059$ (2) and $c=6.4675$ (4) $\% \mathrm{~A}$. The result is almost consistent with the structural determination by the single-crystal diffraction reported herein, with only minor structure parameter deviations.

Compound (I) has an infinite helical chain structure, in which each pyrazolate group bridges two $\mathrm{Ag}(\mathrm{I})$ atoms related by a 21 axis and each $\mathrm{Ag}(\mathrm{I})$ is linearly coordinated by two N atoms from distinct pyrazolate moieties with the N -Ag-N angle of $169.98(14)^{\circ}$, being larger than reported 165.5 (1) ${ }^{\circ}$, (Figure 1). The bond distances and angles are listed in Table 1. The torsion angle of $\mathrm{Ag}(1)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{Ag}(1 \mathrm{~B})$ is $22.6(4)^{\circ}$ and the dihedral angle between two pyrazoly rings around one $\mathrm{Ag}(\mathrm{I})$ center is $60.3(2)^{\circ}$. Furthermore, such chains are linked by interchain Ag — Ag interactions to form a 2D layer (Figure 2). The intrachain and interaction $\mathrm{Ag} — \mathrm{Ag}$ separations are 3.3718 (7) $[\mathrm{Ag}(1)-\mathrm{Ag}(1 \mathrm{~A})]$ and 3.2547 (6) $\AA[\mathrm{Ag}(1)-\mathrm{Ag}(1 \mathrm{~B})]$, respectively, which are comparable well with those reported [3.40 (1) and 3.273 (1) \AA, respectively].

Experimental

$\mathrm{AgNO}_{3}(85 \mathrm{mg}, 0.5 \mathrm{mmol})$ and pyrazole ($34 \mathrm{mg}, 0.5 \mathrm{mmol}$) were dissolved in ammonium hydroxide $(20 \%, 10 \mathrm{ml})$. The solution was filtered and filtrate was allowed to stand for 15 days. Colorless crystals of (I) were collected, in about 50% yield.

Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93$ \AA and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$.

Figures

Fig. 1. Displacement ellipsoid plot (30\% probability) of (I). [symmetry codes: (A) $x-1 / 2,1 / 2$ $-y, 2-z$; (B) $x+1 / 2,1 / 2-y, 2-z]$

supplementary materials

Fig. 2. Two-dimensional network in (I) linked by Ag — Ag interactions. [symmetry codes: (A) $x+1 / 2,1 / 2-y, 2-z$; (B) $1 / 2-x, y-1 / 2, z]$

catena-Poly[silver(I)- μ-pyrazolato- $\left.{ }^{2}{ }^{\mathbf{N}} \mathrm{N}: \mathrm{N}^{\prime}\right]$

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)\right]$
$M_{r}=174.94$
Orthorhombic, $P b c a$
Hall symbol: -P 2ac 2ab
$a=6.4084$ (13) \AA
$b=6.4989(13) \AA$
$c=19.948(4) \AA$
$V=830.8(3) \AA^{3}$
$Z=8$

Data collection

Bruker Smart CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.340, T_{\text {max }}=0.400$
7019 measured reflections
$F_{000}=656$
$D_{\mathrm{x}}=2.797 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 6390 reflections
$\theta=3.1-27.7^{\circ}$
$\mu=4.66 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

951 independent reflections
778 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=3.8^{\circ}$
$h=-8 \rightarrow 7$
$k=-8 \rightarrow 8$
$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.066$
$S=1.26$
951 reflections

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0145 P)^{2}+0.695 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\max }=0.38$ e \AA^{-3}

55 parameters

$\Delta \rho_{\text {min }}=-0.55$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ag1	$0.23552(5)$	$0.32951(6)$	$1.004623(15)$	$0.04206(16)$
N1	$0.3965(5)$	$0.3598(6)$	$0.91516(17)$	$0.0345(9)$
N2	$0.5800(5)$	$0.2552(6)$	$0.90915(17)$	$0.0364(9)$
C1	$0.3418(7)$	$0.4213(7)$	$0.8548(2)$	$0.0403(12)$
H1A	0.2217	0.4958	0.8450	0.048^{*}
C2	$0.4861(7)$	$0.3606(7)$	$0.8087(2)$	$0.0448(12)$
H2A	0.4851	0.3836	0.7627	0.054^{*}
C3	$0.6325(7)$	$0.2581(7)$	$0.8457(2)$	$0.0425(12)$
H3A	0.7528	0.1986	0.8282	0.051^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag 1	$0.0444(3)$	$0.0411(3)$	$0.0407(2)$	$-0.00048(16)$	$0.00707(18)$	$-0.00123(16)$
N 1	$0.038(2)$	$0.032(2)$	$0.033(2)$	$0.0036(18)$	$0.0039(16)$	$-0.0005(17)$
N 2	$0.037(2)$	$0.037(2)$	$0.036(2)$	$0.0002(17)$	$0.0017(17)$	$-0.0002(18)$
C 1	$0.048(3)$	$0.026(3)$	$0.047(3)$	$0.006(2)$	$-0.009(2)$	$0.002(2)$
C 2	$0.062(3)$	$0.040(3)$	$0.033(3)$	$-0.010(3)$	$0.002(2)$	$0.003(2)$
C 3	$0.044(3)$	$0.036(3)$	$0.048(3)$	$-0.001(2)$	$0.011(2)$	$-0.006(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ag} 1 — \mathrm{~N} 1$	$2.070(3)$
$\mathrm{Ag} 1 — \mathrm{~N} 2^{\mathrm{i}}$	$2.063(4)$
$\mathrm{Ag} 1 — \mathrm{Ag} 1^{\mathrm{ii}}$	$3.2547(6)$
$\mathrm{Ag} 1 — \mathrm{Ag} 1^{\mathrm{i}}$	$3.3718(7)$
$\mathrm{N} 1 — \mathrm{C} 1$	$1.316(5)$
$\mathrm{N} 1 — \mathrm{~N} 2$	$1.364(5)$
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1 — \mathrm{~N} 1$	$169.98(14)$

$\mathrm{N} 2-\mathrm{C} 3$	$1.310(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.362(6)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.367(6)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$107.5(3)$

supplementary materials

$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ii }}$	76.18 (10)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ag} 1$	133.2 (3)
N1—Ag1-Ag1 ${ }^{\text {ii }}$	93.82 (10)	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Ag} 1$	117.3 (3)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {iii }}$	107.09 (10)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1$	107.4 (3)
N 1 —Ag1—Ag1 ${ }^{\text {iii }}$	82.91 (10)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Ag} 1^{\text {iv }}$	133.3 (3)
Ag1 ${ }^{\text {ii }}$ - $\mathrm{Ag} 1 — \mathrm{Ag} 1{ }^{\text {iii }}$	173.46 (2)	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Ag} 1{ }^{\text {iv }}$	118.5 (2)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {i }}$	60.31 (10)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	110.4 (4)
N1—Ag1-Ag1 ${ }^{\text {i }}$	117.09 (10)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	124.8
$\mathrm{Ag} 1{ }^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {i }}$	75.415 (18)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	124.8
$\mathrm{Ag} 1{ }^{\text {iii }}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {i }}$	111.111 (17)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	104.1 (4)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {iv }}$	115.02 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	128.0
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {iv }}$	60.57 (10)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	128.0
Ag1 $1^{\text {ii }}$ - Ag 1 - $\mathrm{Ag}^{\text {iv }}{ }^{\text {iv }}$	68.889 (17)	N2-C3-C2	110.6 (4)
$\mathrm{Ag} 1{ }^{\text {iii }}-\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {iv }}$	104.585 (18)	N2-C3-H3A	124.7
Ag1 ${ }^{\text {i }}$ Ag1- $\mathrm{Ag} 1^{\text {iv }}$	143.72 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	124.7
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	108.9 (8)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	0.7 (5)
Ag1 ${ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	112.0 (4)	Ag1-N1-N2-C3	166.6 (3)
Ag1 ${ }^{\text {iiii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{Cl}$	-73.6 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{Ag} 1^{\text {iv }}$	171.5 (3)
Ag1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	36.5 (5)	Ag1-N1-N2—Ag1 ${ }^{\text {iv }}$	-22.6 (4)
$\mathrm{Ag} 1^{\text {iv }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	175.2 (5)	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.3 (5)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{N} 2$	-52.6 (9)	$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-163.1 (3)
$\mathrm{Ag} 1{ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{N} 2$	-49.4 (3)	N1-C1-C2-C3	-0.1 (6)
Ag1 ${ }^{\text {iii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{N} 2$	124.9 (3)	N1-N2-C3-C2	-0.8 (5)
Ag1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{N} 2$	-124.9 (3)	$\mathrm{Ag} 1^{\text {iv }}-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	-169.6 (3)
$\mathrm{Ag} 1^{\text {iv }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{N} 2$	13.7 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	0.6 (6)

Symmetry codes: (i) $x-1 / 2,-y+1 / 2,-z+2$; (ii) $-x+1 / 2, y-1 / 2, z$; (iii) $-x+1 / 2, y+1 / 2, z$; (iv) $x+1 / 2,-y+1 / 2,-z+2$.

Fig. 1

supplementary materials

Fig. 2

